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Abstract 
Representation, analysis and interpretation of an image acquired by a real (i.e. non ideal) imaging 

system is the key problem in many application areas such as robot vision, remote sensing, astronomy and 

medicine, to name but a few. Images may be gray or color. One of the most commonly used to represent 

gray images in the last period is the moments. Moments are considered as statistical quantities that describe 

the pixels distribution inside an image's space. Image reconstruction method is the best way to check the 

capability of the moment to represent the image efficiently. In this paper we introduced efficient methods to 

reconstruct gray scale images based on various sets of discrete orthogonal moments: generalized laguerre 

moments (GLMs), Chebychev moments (CMs) and Krawtchouk moments (KMs). Assisted by quaternion 

algebra, representation of color images become smoothly, hence, we extended both GLMs and CMs by using 

quaternion algebra and derived various sets of quaternion moments: quaternion generalized laguerre 

moments (Q_GLMs) and quaternion Chebychev moments (Q_CMs). The experimental results show the 

capacity of the proposed approaches for image reconstruction against different the noise attack. We used the 

normalized image reconstruction error (NIRE) as a measure to the image reconstruction capability. 

Keywords: Discrete orthogonal moments; quaternion moments; image reconstruction. 

 
1. Introduction 

In order to make decisions in our daily lives, each of us must virtually continually acquire, process, and 

analyze a vast amount of information of varying kinds, significance, and quality. More than 95% of the 

information we take in is visual. An image is an extremely potent information medium and communication tool 

that can effectively and compactly portray complicated scenes and processes. As a result, images serve as 

important informational tools as well as tools for interpersonal communication and machine- human 

interaction. Common digital photos are incredibly information-rich. With a smartphone, you can snap a 

photograph and email it in a matter of seconds to your pals, packing as much information into one picture as 

several hundred pages of prose. Automatic and potent picture analysis techniques are thus desperately needed. 

It is possible to extract important information from digital photos by using the image descriptors known as 
moments of orthogonal functions and transforms. Teague (M.R. Teague, 1980) defined orthogonal moments 

(OMs) as representing binary and grayscale images with the least amount of information overlap or 

redundancy. The OMs might be described in polar or Cartesian coordinates, with the polar OMs being known 
as circular orthogonal moments (P. George, 2014). While OMs of higher orders are able to extract the finer 

details of digital images, OMs of lower orders only extract global elements like forms, which is a very 
important procedure in distinguishing between identical images. Additionally, OMs exhibit decreased 
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sensitivity to various types of noise. Analytically, the image intensity function might be reconstructed using 

a finite collection of OMs and the inverse moment transform. Because OMs are invariant to rotation, scaling, 

and translation transformations, computer vision systems can distinguish between comparable images and 
objects regardless of orientation, location, and camera distance. The significant advantage of circular 

orthogonal moments resides in their capacity to achieve rotation invariance due to their circular nature, 
which is a key attribute in pattern recognition applications (J. Flusser, T. Suk, B. Zitova, 2016). This is in addition 

to their ability to aid in picture reconstruction. 

 

Moments are employed frequently in image processing and analysis because they may extract local and 

global identifying information from the image. In numerous applications, including image reconstruction 

[(B. Honarvar, et al 2014)( H. Karmouni, et al., 2017)( H. Zhu, et al. 2012)( M. Yamni, et al., 2019)( O. El ogri, et al., 2019)], 

image compression (B. Honarvar, et al 2014)( H. Rahmalan, et al., 2010) (G.A. Papakostas, et al., 2002)], image 

watermarking (E.D. Tsougenis, et al., 2015)( X. Liu, et al. 2017)( E.D. Tsougenis, et al., 2012) E.D. Tsougenis, et al., 2013)( 

L. Zhang, et al., 2007), edge detection (L.-M. Luo, et al., 1994), image geometric distortion correction (M. Alghoniemy, 

et al., 2000), and image classification [(A. Hmimid, et al., 2015) (M. Sayyouri, et al., 2015)], they are used with 

outstanding results. Projecting the data space on frequently orthogonal bases is the fundamental concept 

behind moments. In fact, discrete orthogonal polynomials [(A.F. Nikiforov, et al., 199)] like Chebichef , 

Krawtchouk, and Charlier and continuous orthogonal polynomials like Legendre, Zernike, Gegenbauer, and 

Fourier-Mellin form continuous orthogonal moments (COMs), and discrete orthogonal polynomials such as 

Chebichef [26], Krawtchouk, Charlier. 

Laguerre moments Chebychev moments and Krawtchouk moments are three discrete orthogonal 

moments they are defined in terms of laguerre polynomial, Chebychev polynomial and Krawtchouk 

polynomial respectively. In this study we presented theses classical moments and their quaternion form for 

gray and color image representation via their ability to reconstruct such images. 
 

2. Proposed discrete moments 

 

2.1 Discrete Generalized Laguerre Moments (GLMs) 
The ALMs are one kind of discrete orthogonal moment. It defined in the existence of the Laguerre 

polynomials (LPs) [33] (basis functions), which are orthogonal over the whole right-half plane. GLMs of 

the image 𝐼(𝑥, 𝑦) with the order of 𝑚 + 𝑛 and size of 𝑁 𝑥 𝑁 are defined as follows:  
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As shown in Fig. 1, one can observe that the values of the normalized polynomials L̃𝛼 (𝑥) are 

bounded 

on a finite interval, a thing that doesn’t occur with non-normalized 𝐿𝛼 (𝑥). The value of the 

parameter α 

has an essential role in the pattern recognition task, where it controls the shifting to the image 

region of interest. In this study, we set the value of α = 2. 

2.2 Discrete Chebychev Moments (CMs) 
The discrete Chebychev moments for digital image 𝐼(𝑥, 𝑦) defined as
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2.3 Discrete Krawtchouk Moments (KMs) 
The Krawtchouk moments of order (n+m) in terms of weighted Krawtchouk 

polynomials, for an image     with intensity function, 𝑓(𝑥, 𝑦), is defined as 
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where, 𝛿𝑚𝑛 is a kronecker delta, 𝛿𝑚𝑛 = 1 if 𝑚 = 𝑛 and 𝛿𝑚𝑛 = 0 otherwise.  

 

 

 

 

According to the above weight and normalization functions, the orthogonality condition of the weighted 
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Fig. 3(a) shows the plots for the first few orders of the normalized Krawtchouk polynomials and 

 

it is easily observed that the range of values of the polynomials expands rapidly with a slight increase of 

the order. The values of the weighted Krawtchouk polynomials are confined within the range of [-1, 1], 

as shown in Fig. 3(b). 
 

 
2.4 Quaternion 

In 1843 [46], Hamilton introduced a generalization to the complex number called quaternion. The 

complex number consists of two parts: the real part and another part called the imaginary part whereas, 

the quaternion consists of one real-part and the other three imaginary parts. The quaternion number 𝑞 can 

be defined as follows: 

𝑞 = 𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘, (24) 
where 𝑎, 𝑏, 𝑐, 𝑑 𝜖 𝑅, and 𝑖, 𝑗, 𝑘 represent complex operators have the following characteristics: 

𝑖2 = 𝑗2 = 𝑘2 = −1, (25) 
𝑖𝑗 = −𝑗𝑖 = 𝑘, 𝑗𝑘 = −𝑘𝑗 = 𝑖, 𝑘𝑖 = −𝑖𝑘 = 𝑗. (26) 
Eq. (26) Shows that the multiplication in quaternions is not commutative. 

Usually, it is better to represent the quaternion as a sum of two parts: a scalar part denoted as 𝑆(𝑞), and a 

vector part indicated as 𝑉(𝑞). 
𝑞 = 𝑆(𝑞) + 𝑉(𝑞), (27) 
where 𝑆(𝑞) = 𝑎 and 𝑉(𝑞) = 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘, 
𝑞 is reduced to pure quaternion if 𝑆(𝑞) = 0, and to unit pure quaternion if ‖𝑞‖ = 1, where ‖𝑞‖ = 
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√𝑎2 + 𝑏2 + 𝑐2 + 𝑑2 . 

2.5 Proposed Q_GLMs 
Let 𝑓(𝑥, 𝑦) be an RGB color image defined in the cartesian coordinates. One can consider the three 

channels red, green and blue in the color image 𝑓(𝑥, 𝑦) as the three imaginary parts in pure quaternion, 

hence the color image 𝑓(𝑥, 𝑦) can be represented as follows: 

𝑓(𝑥, 𝑦) = 𝑓𝑅𝑖 + 𝑓𝐺𝑗 + 𝑓𝐵𝑘 
= 𝑓𝑅(𝑥, 𝑦)𝑖 + 𝑓𝐺(𝑥, 𝑦)𝑗 + 𝑓𝐵(𝑥, 𝑦)𝑘. (28) 

Due to the noncommutative property of quaternion multiplication that appears in Eq. (26), there are 

two types of Q_GLMs: left-side Q_ALMs, and the right-side Q_GLMs. 
In this study, we used the right-side Q_GLMs that can be defined as follows: 

 

  

 
 

where 𝜇 is a pure unit quaternion chosen as 𝜇 = (𝑖 + 𝑗 + 𝑘)/√3 hence Eq. (29), rewritten as: 
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3. Results and Discussion 

3.1 Experimental results over gray scale and color images 
This section presents the test data and results used to validate the theoretical framework presented 

above, and also to establish the feature representation capability of Generalized Laguerre moments 

(GLMs) Chebychev moments (CMs) and Krawtchouk moments (KMs) through image reconstruction. A 

 
 

comparative analysis between the proposed approaches is also given. An objective measure is used to 

characterize the error between the original image, 𝑓(𝑥, 𝑦), and the reconstructed image, 𝑓 (𝑥, 𝑦), is defined 
as follows: 
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A gray scale image of Cameraman (see Fig. 5) on a 256 x 256 pixel grid was used to analyze the values 

of the moment functions. As shown in Figs. 4 and 5 the obtained NIRE values and the reconstructed 

images specified that the Chebychev moments give better results at low orders but at orders greater than 

90, Krawtchouk moments were the best. The same results obtained with the true colors as specified in 

Figs (6) and (7). 
 

 
 

 

 

 

4. Conclusion 
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In this study, three sets of discrete Generalized Linear Model moments are The polynomials Laguerre, 

Chebyshev, and Krawtchouk are introduced. The polynomials are scaled before the suggested moments 

are formulated, creating a new set of weighted polynomials. By doing so, overflows are prevented and the 

polynomials' dynamic range of values is constrained. There is no requirement for spatial quantization 

because the weighted polynomials are polynomials of a discrete variable, hence the proposed moments 

can be calculated without the use of numerical approximation. This characteristic makes the suggested 

moments ideal for obtaining the analytical characteristics of digital images. We also introduced sets of 

quaternion Generalized Laguerre and quaternion Chebyshev moments for representation of true color 

images. The reconstructed images test specified the superiority of the Krawtchouk moments at higher 

orders in both cases of gray scale and color images. 
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